radial_transform¶
- 
class radial_transform.RadialTransform¶
- A definition of (radial) grid points by means of a transformation. - The definition starts from a uniform 1D grid with spacing 1 and starting point 0: 0, 1, 2, 3, … npoint-1. These values are defined on the so-called t-axis. The transformation is a function r=f(t) that defines the actual grid points on the r-axis: f(0), f(1), f(2), … f(npoint-1). Different implementation for the function f are available. - Abstract class for radial transformation. Not use it directly 
- 
class radial_transform.IndentityRadialTransform(size)¶
- For testing only 
- 
class radial_transform.PowerRadialTransform(rmin, rmax, size)¶
- A power grid. - The grid points are distributed as follows: - \(r_i = r_0 i^{\alpha}\) - with - \(\alpha = \dfrac{\ln r_{N-1} - \ln r_0}{\ln N-1}\) 
- 
class radial_transform.ChebyshevRadialTransform(radii, size)¶
- Radial grid for multi-center molecular integration. - This grid is based on Becke’s paper, the transformation requires the covalent radius - radiiof a given atom, such that;- \(r = radii \dfrac{1+x}{1-x}\) - References - Becke, A. D. A multi-center numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547 (1988). - Parameters
- radii (float) – Atomic radii for the grid. 
- size (int) – Number of grid points